Diffusion approximation for multi-scale stochastic reaction-diffusion equations

نویسندگان

چکیده

In this paper, we study the diffusion approximation for singularly perturbed stochastic reaction-diffusion equation with a fast oscillating term. The asymptotic limit original system is obtained, where an extra Gaussian term appears. Such explicitly given in terms of solution Poisson Hilbert space. Moreover, also obtain rate convergence, and convergence shown not to depend on regularity coefficients respect variable, which coincides intuition since component has been totally homogenized out equation.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation of stochastic advection diffusion equations with finite difference scheme

In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...

متن کامل

approximation of stochastic advection diffusion equations with finite difference scheme

in this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. we applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. the main properties of deterministic difference schemes,...

متن کامل

Macroscopic reduction for stochastic reaction-diffusion equations

The macroscopic behavior of dissipative stochastic partial differential equations usually can be described by a finite dimensional system. This article proves that a macroscopic reduced model may be constructed for stochastic reaction-diffusion equations with cubic nonlinearity by artificial separating the system into two distinct slow-fast time parts. An averaging method and a deviation estima...

متن کامل

Quasi–steady–state Approximation for Reaction–diffusion Equations

In this paper, we present a rigorous proof of the quasi– steady–state approximation (QSSA) used in chemistry, in two different settings: the first one corresponds to reaction–diffusion equations, while the second one is devoted to ODEs, with a particular attention to the effect of temperature.

متن کامل

Averaging principle for a class of stochastic reaction–diffusion equations

We consider the averaging principle for stochastic reaction–diffusion equations. Under some assumptions providing existence of a unique invariant measure of the fast motion with the frozen slow component, we calculate limiting slow motion. The study of solvability of Kolmogorov equations in Hilbert spaces and the analysis of regularity properties of solutions, allow to generalize the classical ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2021

ISSN: ['1090-2732', '0022-0396']

DOI: https://doi.org/10.1016/j.jde.2021.07.039